Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities
نویسندگان
چکیده
Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50-100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation.
منابع مشابه
Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes.
Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO...
متن کاملToxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection.
It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immu...
متن کاملGlycosyl-phosphatidylinositol-anchored interleukin-2 expressed on tumor-derived exosomes induces antitumor immune response in vitro.
AIMS AND BACKGROUND Tumor-derived exosomes (TEXs) have been considered as a new kind of cancer vaccine, but the antitumor effects are not satisfactory. In order to improve the efficacy of TEXs, we investigated whether exosomes derived from glycosyl-phosphatidylinositol-anchored interleukin 2 (GPI-IL-2) gene-modified bladder cancer cells can increase the antitumor effects. METHODS AND STUDY DE...
متن کاملUmbilical cord blood-derived dendritic cells loaded with BGC823 tumor antigens and DC-derived exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumor immunity in vitro and in vivo
BACKGROUND Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells and from which a significant number of dendritic cells (DCs) can be produced. But the therapeutic role of DCs and exosomes (EXO) generated from DCs is not fully elucidated. MATERIAL AND METHODS The UCB-derived DCs were loaded with tumor antigens generated from BGC823 cell line. Exosomes were derived from these ...
متن کاملCancer immunotherapy with exosomes requires B-cell activation
Exosomes derived from dendritic cells (dexosomes) induce potent antitumor immune responses in mice. We have shown that the efficacy of dexosome-elicited antitumor immunity relies on the presence of both T- and B-cell dexosome-associated epitopes. Hence, the inclusion of B-cell epitopes in anticancer vaccines is crucial for the success of this immunotherapeutic intervention.
متن کامل